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1 Introduction



Background
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 Flexible

 Efficient

 High capacity

 Unmanned

AGVs working in a warehouse

AGV（automated guided vehicle）
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Control 
algorithms 

lag

The size of 
AGVs system 

grows

Complexity 
grows rapidly

Inefficient 
transportation

Benefit 
decreases

Background
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Advantage Disadvantage

Exact approaches Optimal solution Extreme high time complexity

Heuristics Good solution High time complexity

Meta-heuristics Good solution Cannot response in real-time 

Regulations Response in real-time Relative suboptimal solution

Background



Development of Deep Reinforcement 
Learning (DRL)
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Atari
Raw pixels

AlphaGo
Defeat human champion

AlphaGo Zero
Without human 
knowledge

StarCraft, DOTA
Huge state space

Defeat human expert
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Similar Researches

• Tabular reinforcement learning. Curse-of-dimensionality.

• Supervised data will influence the final performance.

• AGVs number is small.

[Xue, T. et al., 2018], [Kamoshida, R. et al., 2017], [Zhao, M. et al., 2019]



2 AGVs Routing Problem



AGVs system
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A simplified AGVs working environment

Return & 

Reprocess
Shelf

Picking station

Charging point

AGV



AGVs Routing
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Problems in AGVs routing



3 DRL Framework



Markov decision processes (MDPs)
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𝐺𝑡 ≐ 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯

An MDP

The goal to maximize

Agent

Environment

state reward action

An MDP is a natural real-time responding model



Modeling Routing Problem based on MDPs
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Conventional routing mode 
Plan the total or a part of the 

route before depart

MDPs mode
A series of decisions in time sequence 

(decide step by step based on the real-time 
information)

𝑆0, 𝐴0, 𝑅1, 𝑆1, 𝐴1, 𝑅2, 𝑆2, 𝐴2, 𝑅3, …

After the agent reaches point 4 from point 
1, it will see the latest state which may be 

different from the state in point 1 

1 start

4 5

7 end6

2 3



DQN
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Q-learning
𝑄(𝑆, 𝐴) ← 𝑄(𝑆, 𝐴) + 𝛼[𝑅 + 𝛾𝑚𝑎𝑥_𝑎 𝑄(𝑆^′, 𝑎) − 𝑄(𝑆, 𝐴)]

Experience replay

Deep learning

Target network

DQN

Advantage of DQN：
 Increase stability
 Sample efficient

Disadvantage of DQN ：
 Low training speed
 Cannot use multiple 

CPUs

[Mnih, V., et al., 2015]



Asynchronous DQN
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𝜃

Global parameters

𝜃−

∆𝜃

𝜃, 𝜃−

𝜃′

DQN thread 1

Experience

Environment

…𝜃′

DQN thread 2

Experience

Environment

𝜃′

DQN thread n

Experience

Environment



Parameter sharing
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AGV 1 AGV 2 … AGV n

𝜃1
′ 𝜃2

′ … 𝜃𝑛
′

Environment

Make 𝜃′ = 𝜃1
′= 𝜃2

′ = ⋯ = 𝜃𝑛
′

The joint action of a multi-agent problem 
suffers curse-of-dimensionality

𝜃′

DQN thread n

Experience

Environment



4 Feature Processing



Discretization of Continuous Features
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Discretize the map into grids
point A: (1.1, 3.2) on a track,
point B: (1.05, 3.2) on an obstacle.

Jump characteristic

A B



One-hot code
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Free AGV 1 AGV 2 AGV 3

0 0 1 0

AGV code

Location of AGV 2

The one-hot code for one gird

…

AGV code Destination 

code

Position type 

code

Is controlled 

AGV code



Word Embedding
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cat: [-0.065, -0.035, 0.019, -0.026, 0.085,…]

dog: [-0.019, -0.076, 0.044, 0.021,0.095,…]

table: [0.027, 0.013, 0.006, -0.023, 0.014, …]

Use an embedding vector to represent a word
1: [-0.032, -0.095, 0.039, 0.036, 0.038,…]

2: [-0.018, -0.076, 0.042, 0.021,0.055,…]

…

96: [0.123, 0.098, 0.066, -0.028, -0.076, …]

Use an embedding vector to represent a grid



Embedding Code
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𝐴𝐺        ( 𝑡)

Embedding layer

𝐴𝐺 𝑡        

Concatenate

𝐴𝐺 𝑡          

       

𝐴𝐺 𝑡       𝑎     
       

Position of 𝐴𝐺 𝑡. This AGV 
position indices is : [1, 2, 3, …, 9]

Destination of 𝐴𝐺 𝑡. This 
AGV destination indices is : 
[82, 83, 84, …, 90]



Embedding Code
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𝐴𝐺        ( 𝑡)

Embedding layer

𝐴𝐺 𝑡        

Concatenate

𝐴𝐺 𝑡          

       

𝐴𝐺 𝑡       𝑎     
       

[1, 2, 3, …, 9] [82, 83, 84, …, 90]

[1, 2, 3, …, 9, 82, 83, 84, …, 90]

𝑣0,1 ⋯ 𝑣0,18
⋮ ⋱ ⋮

𝑣64,1 ⋯ 𝑣64,18

Suppose embedding dimension is 64

After concatenating, the length of 
indices is 18



Comparison of Input Size of One-hot and 
Embedding
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Map discretization Number of girds of 

one AGV occupies

AGVs number Embedding dimension

n*n m*m k dim

One-hot Embedding

Input size  2(2𝑘 + 4) 𝑘 ×   𝑚 ×𝑚2 × 2

One-hot Embedding

Input Size 240000 5760

Make n=100, m=3, 
a=10, dim=32

Suppose：

The embedding input is about 41.7 times smaller than the one-hot input
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Advantage of Embedding：
• Need less data
• Suitable for complex terrains

An example of sparse road scene

Comparison of Input Size of One-hot and 
Embedding



5 Neural Network Architecture
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… 𝑡     𝑡   1   𝑡   _( −1)

FC layer 1

𝑣𝑡   𝑣 𝑡   1 𝑣 𝑡   _( −1)…

Repeat

Concatenate

FC layer 2

FC layer 3

        1          −1…

LSTM LSTM…  itial

𝑄1 … 𝑄 

Formation of Conflict Vectors

Conflict Vectors Processing



Formation of Conflict Vectors
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Parameter sharing. The input data should be formed 
from the perspective of the ego of this agent



Conflict Vectors Processing
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6 Experiments



Comparison of One-hot and Embedding
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Track proportion: 62% Track proportion: 43%

The network for one-hot: 2 conv blocks + 2 FC layers.



Results
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Training process of a scene with 22 AGVs

Config:
• Grids: 28 * 14
• AGVs number: 22
• Embedding dimension: 64
• CPU: 56 cores



Results
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Performance comparison between random, regulation, 
and asynchronous DQN

Asynchronous DQN is about 153 times better than the regulation and 18% 
better than the regulation method in performance.

 Average Performance 

Random 0.355 

Regulation 46.1 

Asynchronous DQN 54.2 

 

Performance: average number of tasks completed by one AGV every 1000 steps



Simulation

3422 AGVs, 56 CPUs, 72 hours



7 Conclusion



Conclusion
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Method:

• Model the AGVs routing problem into an MDP.

• Improve CPU utilization by the asynchronous technique.

• Use the embedding technique to represent grids.

• LSTM is exploited to process features.

Result:

• Our model has advantages over conventional methods both in 
responding speed and getting more optimal solutions.
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